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Abstract. We introduce a local formalism, in terms of eigenstates of number operators, having well defined
point symmetry, to solve the Hubbard model at weak coupling on a N×N square lattice (for even N). The
key concept is that of W = 0 states, that are the many-body eigenstates of the kinetic energy with vanishing
Hubbard repulsion. At half filling, the wave function demonstrates an antiferromagnetic order, a lattice step
translation being equivalent to a spin flip. Further, we state a general theorem which allows to find all the
W = 0 pairs (two-body W = 0 singlet states). We show that, in special cases, this assigns the ground state
symmetries at least in the weak coupling regime. TheN = 4 case is discussed in detail. To study the doped
half filled system, we enhance the group theory analysis of the 4×4 Hubbard model introducing an Optimal
Group which explains all the degeneracies in the one-body and many-body spectra. We use the Optimal
Group to predict the possible ground state symmetries of the 4 × 4 doped antiferromagnet by means of
our general theorem and the results are in agreement with exact diagonalization data. Then we create
W = 0 electron pairs over the antiferromagnetic state. We show analitycally that the effective interaction
between the electrons of the pairs is attractive and forms bound states. Computing the corresponding
binding energy we are able to definitely predict the exact ground state symmetry.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 71.10.Li Excited
states and pairing interactions in model systems – 74.72.-h High-Tc compounds

1 Introduction

The (repulsive) 2D Hubbard Hamiltonian is one of the
popular models of the high-TC cuprates [1], as many peo-
ple believe that it contains at least some of the relevant
ingredients of the mechanism of superconductivity. While
other ingredients may well be missing for the full expla-
nation of superconductivity and the rich phase diagram of
these materials, there are now strong evidences of pairing
in this model, and although pairing is not synonymous to
superconductivity it can hardly be supposed to be extra-
neous to it. The evidence for pairing comes from various
independent methods, including cluster diagonalizations
[2–4], fluctuation exchange (FLEX) [5] diagrammatic ap-
proach, which is based on a conserving approximation, and
renormalization group techniques [6,7]. The approach we
are proposing is based on an analytic canonical transfor-
mation, reminiscent of the original Cooper theory. How-
ever, our understanding of the many-body ground state is
only partial, and the symmetries of the bound pairs have
not yet been fully explored. The Hubbard model must be
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more thoroughly understood before we can solve more re-
alistic ones.

In the strong coupling limit the double occupation of
the same site is energetically suppressed and the model
at half filling is equivalent to the Heisenberg model with
an antiferromagnetic exchange interaction [8]. A popular
approach takes care of the strong repulsion between two
opposite spin fermions by a Gutzwiller [9] projection, i.e.
by throwing out of the Hilbert space the double occupa-
tion states. However, truncating the Hilbert space in this
way costs kinetic energy, so at finite U the system must
allow double occupation, also in the ground state, as one
can see from the eigenvectors of cluster calculations. At
weak coupling, on the other hand, it makes sense to speak
about particles in filled shells, which behave much as core
electrons in atomic physics, and particles in partially filled,
or valence, shells. Remarkably, particles in partially filled
shells can totally avoid double occupation at no cost in
energy; they do so, forming W=0 states, that are defined
as many-particle eigenstates of the kinetic energy with no
double occupation. Below, using a new formalism, we show
how W = 0 states arise by symmetry. We stress that since
W = 0 states emerge from symmetry alone, they remain
W = 0 for any coupling strength and are an adequate
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starting point for a realistic theory. This is the reason
why weak coupling expansions often provide good approx-
imations at intermediate coupling, as observed by several
authors [10–12].

1.1 Canonical transformation approach to the pairing
mechanism

Let us consider the Hubbard model with Hamiltonian

H = H0 +W = t
∑
σ

∑
〈r,r′〉

c†rσcr′σ +
∑
r

Un̂r↑n̂r↓,

U > 0, (1)

on a square lattice of N × N sites with periodic bound-
ary conditions and even N . Here σ =↑, ↓ is the spin and
r, r′ the spatial degrees of freedom of the hole creation
and annihilation operators c† and c respectively. The sum
on 〈r, r′〉 is over the pairs of nearest neighbors sites and
n̂rσ is the number operator on the site r of spin σ. The
point symmetry is C4v, the group of a square [13]; besides,
H is invariant under the commutative group of transla-
tions T and hence the space group [14] G = T ⊗ C4v;
⊗ means the semidirect product. We represent sites by
r = (ix, iy) and wave vectors by k = (kx, ky) = 2π

N (ix, iy),
with ix, iy = 0, . . . , N − 1. In terms of the Fourier ex-
panded fermion operators ckσ = 1

N

∑
r eikrcrσ, we have

H0 =
∑
k ε(k)c†kσckσ with ε(k) = 2t[cos kx + cos ky]. Then

the one-body plane wave state c†kσ|0〉 ≡ |kσ〉 is an eigen-
state of H0.

To study the behaviour of two holes added to the sys-
tem in its ground state, we introduce the W = 0 pairs, a
special case of W = 0 states. Using degenerate eigenstates
of the kinetic energy H0, the non-Abelian point symme-
try group C4v of the Hubbard Hamiltonian (1) allows the
existence of two-body singlet states with no double occu-
pancy. They are obtained by a configuration interaction
mechanism and may be of special interest since the parti-
cles of aW = 0 pair do not feel any direct repulsion. Hence
a new pairing scenario arises: since the two extra particles
cannot interact directly, by definition of W = 0 pair, their
effective interaction comes out from virtual electron-hole
excitations exchanges with the Fermi sea and in principle
can be attractive. In the following we show how to get
the effective interaction between two holes added to the
system.

Many configurations contribute to the interacting
(n+ 2)-body ground state |Ψ0(n+ 2)〉 and we need a com-
plete set S to expand it exactly; as long as it is com-
plete, however, we can design S as we please. We can
take the non-interacting n-body Fermi sphere |Φ(n)〉 as
our vacuum and build the complete set in terms of exci-
tations over the vacuum. In the subspace with vanishing
spin z component, the simplest states that enter the con-
figuration mixing are those obtained from |Φ(n)〉 by cre-
ating two extra holes over it (we call them the m states);

the set

c†k1↑c
†
k2↓|Φ(n)〉, ε(k1), ε(k2) > εF (2)

where εF is the Fermi energy, is a basis for this part of
the Hilbert space. Similarly, along with the pair m states,
we introduce the 4-body α states, obtained from |Φ(n)〉
by creating 2 holes and 1 electron-hole (e-h) pair; a basis
looks like

c†k1↑c
†
k2↓ck3σc

†
k4σ
|Φ(n)〉,

ε(k1), ε(k2), ε(k4) > εF > ε(k3), σ =↑, ↓ (3)

Then S includes the 6-body β states having 2 holes and
2 e-h pairs, and so on until states with two holes and n
e-h pairs if we are below half filling or 2N2−n e-h pairs if
we are above. We are using Greek indices for the configu-
rations containing the electron-hole pairs, which here are
playing largely the same rôle as phonons in the Cooper
theory. By means of the complete set S we now expand
the interacting ground state

|Ψ0(n+ 2)〉 =
∑
m

am|m〉+
∑
α

bα|α〉+
∑
β

cβ |β〉+ ....

(4)

and set up the Schrödinger equation

H|Ψ0(n+ 2)〉 = E|Ψ0(n+ 2)〉. (5)

We stress that equation (4) is configuration interaction,
not a perturbative expansion.

When the number n of holes in the N × N system is
such that |Φ(n)〉 is a single non-degenerate determinant
(the Fermi surface is totally filled), we can easily and un-
ambiguously define and calculate the effective interaction
between the two extra holes since the expansion (4) for
the interacting ground state is unique: this is done by
a canonical transformation [15–17] from the many-body
Hamiltonian of equation (1). We consider the effects of
the operators on the terms of |Ψ0(n+ 2)〉. We write:

H0|m〉 = Em|m〉, (6)

and since W can create or destroy up to 2 e-h pairs, its
action on an m state yields

W |m〉 =
∑
m′

Wm′,m|m′〉+
∑
α

|α〉Wα,m+
∑
β

|β〉Wβ,m. (7)

The matrix elements of the two-body interaction W be-
tween determinants which differ by two spin-orbitals re-
duces to a bielectronic integral. Hence one can show that
if m′,m represent different W = 0 pairs added to the vac-
uum, Wm′,m vanishes. Moreover,

W |α〉 =
∑
m

|m〉Wm,α +
∑
α′

|α′〉Wα′,α

+
∑
β

|β〉Wβ,α +
∑
γ

|γ〉Wγα, (8)
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where scattering between 4-body states is allowed by the
second term, and so on. In this way we obtain an algebraic
system for the coefficients of the configuration interaction
(4). However to test the instability of the Fermi liquid to-
wards pairing it is sufficient to study the amplitudes am of
the m states. In the weak coupling limit this can be done
truncating the expansion (4) to the α states because, as we
have shown [15], the inclusion of the β, γ, . . . states pro-
duces a renormalization of the matrix elements of higher
order in W , leaving the structure of the equations unal-
tered. Choosing the α states such that

(H0 +W )αα′ = δαα′E
′
α (9)

the algebraic system reduces to

(Em −E) am +
∑
m′

am′Wm,m′ +
∑
α

bαWm,α = 0 (10)

(E′α −E) bα +
∑
m′

am′Wα,m′ = 0. (11)

Solving for bα and substituting in the first equation we
exactly decouple the 4-body states as well, ending up with
an equation for the dressed pair |a〉 =

∑
m am|m〉. The

effective Schrödinger equation for the pair reads

(H0 +W +Weff [E]) |a〉 = E|a〉 (12)

where

(Weff)mm′ = −
∑
α

WmαWαm′

E′α −E
· (13)

Hence equation (12) is a self-consistent equation and we
have calculated the effective interaction Weff between
W = 0 pairs analytically [16,17]; it can be attractive de-
pending on n. Also we have found that the results compare
well with exact diagonalization results, when available.
Basically the same mechanism works for small clusters
with open boundary conditions [3].

We want to stress that the truncated expansion of
|Ψ0(n+2)〉 in equation (4) doesn’t give a good approxima-
tion of the interacting ground state wave function but only
of its weak coupling am amplitudes. Similarly in the BCS
model, from the Cooper equation (obtained by truncation
of |Ψ0(n + 2)〉 to the m states) we can estimate only the
pair coefficients of the ground state and not its full struc-
ture. Nevertheless this is enough to study bound states
formation; indeed the energy gap of the pair in the Cooper
theory and in the many-body BCS theory are equals.

1.2 Truncated configuration interaction: description
of the pairing mechanism in small clusters

Although the above canonical transformation can be per-
formed without any truncation of the configuration inter-
action expansion, the description simplifies if we take into
account α states only. As observed above this is justified

Fig. 1. The e-h exchange diagram for the two-hole amplitude.
For W = 0 pairs, the direct interaction vanishes and this di-
agram produces an effective interaction, splitting singlet and
triplet pairs.

in the weak coupling regime and is enough to study the
pairing problem. Let us consider for example the pairing
mechanism in small clusters, like CuO4 and Cu5O16. Such
clusters with 4 holes have ground states of 1B2 symmetry
in C4v for 0 < U ≤ t. The diagnosis that hole pairing
between the holes of a W = 0 pair occurs in these ground
states results from the following steps.

a) The lowest eigenstate of the one-body energy spec-
trum has A1 symmetry and the interacting ground state
with two holes is a C4v total symmetric singlet. The state
|Φ〉 = c†A1↑c

†
A1↓|0〉 is the two-body U = 0 non-degenerate

ground state, where here and in the following steps c†Iσ is
the creation operator for the hole eigenstate of I symmetry
and spin σ. b) The first excited level of the one-body en-
ergy spectrum is degenerate and the corresponding eigen-
states transform as the vector components (x, y). c) To
have a ground state with four holes of 1B2 symmetry in
the limit of vanishing interaction we must create two holes
over |Φ〉 in the singlet state |mS〉 ≡ 1√

2
(c†x↑c

†
y↓+c

†
y↑c
†
x↓)|Φ〉.

d) Taking |mS〉 as our unique m state we apply the
above canonical transformation and we find an effective
attractive interaction summing over all the virtual 4-body
(3 holes-1 electron) intermediate states.

As another description to this weak-coupling case,
we may say we are doing degenerate second-order per-
turbation theory; in this example, the zeroth approxi-
mation eigenstates are just two, |m1〉 ≡ c†x↑c

†
y↓|Φ〉 and

|m2〉 ≡ c†y↑c
†
x↓|Φ〉, and the problem is reduced to a 2 × 2

matrix diagonalization. The corresponding second-order
interaction is illustrated in Figure 1: it takes the state
|m1〉 into |m2〉 and conversely. Hence it is actually a spin-
flip interaction.

It turns out [3] that the effective interaction is attrac-
tive in the singlet |Ψ1B2〉 ≡ |mS〉 = 1√

2
(|m1〉 + |m2〉) and

equal in size, but repulsive, in the triplet |Ψ3B2〉 ≡ |mT 〉 =
1√
2
(|m1〉− |m2〉). That is definitely a pairing situation for

the singlet. e) The two-body state 1√
2
(c†x↑c

†
y↓ + c†y↑c

†
x↓)|0〉

is a W = 0 pair (no direct interaction occurs between
the holes); hence we can say that the W = 0 pair, when
dressed by virtual e-h excitations, gives up a bound pair.

These are the principles that here we wish to extend
to the half filled 4× 4 Hubbard model of equation (1).
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1.3 Plan of the paper

Below, we consider the ground state of the 4 × 4 cluster
with 14, 15 and 16 holes, and demonstrate that the 14
hole case must be interpreted in terms of pairing of two
electrons added to the half-filled antiferromagnet. How-
ever the non-interacting ground state is degenerate and
this means that we must extend the above formalism.

The physical interpretation emerges from the fact that
we are able to solve the problem analytically at weak cou-
pling. When the analytic results are compared to the nu-
merical ones [2] we can conclude that i) we are able to
predict from group theory the good quantum numbers
and degeneracies of the ground states involved at vari-
ous occupancies ii) we are able to show that the effective
interaction between the extra electrons is attractive in the
singlet (ground state) and repulsive for the triplet.

These analytic results have been allowed by a deeper
symmetry analysis of the 4×4 cluster than had been pos-
sible previously. The antiferromagnetic ground state has
also been explored analytically by a new approach. In this
way, the electron pair creation is also accomplished ana-
lytically, with full control of the symmetry.

Due to the special role played by W = 0 pairs, in the
next section we state a general theorem to obtain all the
possible W = 0 pairs. The theorem requires the knowledge
of a (previously unknown) symmetry group big enough to
explain the one-body degeneracies (optimal group). As we
shall see the space group G does not work and in Section 3
we determine the optimal group for the 4×4 square lattice.
In Section 4 we determine the exact weak coupling ground
state wave function at half filling, that is unique as granted
by the Lieb’s theorem [18]. This will be done using a new
local formalism that enables us to write down all the W =
0 states of the partially filled shell. In Section 5, with the
help of the theorem of Section 2 and with the optimal
group in hands, we single out all W = 0 pairs formed
from degenerate orbitals of the shell ε(k) = 0. Hence in
Section 6 we use the corresponding local basis to write
down W = 0 two and four-body states. Then to study
the pairing problem at half filling we extend the above
canonical transformation and finally in Section 7 we shall
reduce the pairing problem to 2×2 matrices and compare
with the literature numerical data. Finally, we underline
the implications of the present results in Section 8.

2 W = 0 pairs and symmetries of the doped
ground states: a useful theorem

In general, one has a set S of degenerate eigenstates of H0

which is partially filled in the U = 0 limit. To first-order,
we ignore the particles in the filled shells and find the
exact ground state(s) of W in the truncated Hilbert space
H describing those in the partially filled shell. One simple
case occurs when only two holes are in the partially filled
shell, because the ground states are W = 0 pairs (filled
shells are understood). We recall that they are two body
singlets that are eigenstates of H0 and belong to the kernel

of W . There is no double occupation of any site in such
a pair. This means that the two particles of a W = 0
pair do not interact directly, but only by means of virtual
electron-hole excitations.

As we shall see, another special case occurs when the
system at half filling is doped by removing two particles
(they can only be removed as W = 0 pairs).

In this section we want to show how W = 0 pairs
arise, due to the symmetry of the system. Previously
[15,16] we have shown that W = 0 pairs with zero total
momentum are a consequence of the C4v point symmetry.
Projecting the determinantal state

|d(k)〉 = c†k↑c
†
−k↓|0〉 (14)

on the irreducible representations A2, B1 and B2 of C4v

one obtains W = 0 pairs.
Here we want to point out a more powerful and

elegant criterion to get all the W = 0 pairs, including
those of nonvanishing total momentum. We can do that
in terms of the optimal group G of the Hamiltonian,
that we define as a symmetry group which is big enough
to justify the degeneracy of the single particle energy
levels. By definition, every one-body eigenstate of H can
be classified as belonging to one of the irreps of G. We
may say that an irrep η is represented in the one-body
spectrum of H if at least one of the one-body levels
belongs to η. Let E be the set of the irreps of G which are
represented in the one-body spectrum of H. Let |ψ〉 be a
two-body eigenstate of the kinetic energy H0 with spin
Sz = 0 and P (η) the projection operator on the irrep η.
We wish to prove the W = 0 theorem:

η /∈ E ⇔WP (η)|ψ〉 = 0. (15)

In other terms, any nonvanishing projection of |ψ〉 on an
irrep not contained in E , is an eigenstate of H0 with no
double occupancy. The singlet component of this state is
a W = 0 pair. Conversely, any pair belonging to an irrep
represented in the spectrum must have positive W expec-
tation value.

In the case of the 4 × 4 model (see Sect. 5) the pairs
belonging to irreps of the optimal group have well defined
parities under particle exchange, and can be classified as
singlet or triplet pairs.

Proof: Let us consider a two body state of opposite
spins transforming as the ith component of the irrep η
of G:

|ψ(η)
i 〉 =

∑
r1r2

ψ
(η)
i (r1, r2)c†r1↑c

†
r2↓|0〉. (16)

Then we have

n̂r↑n̂r↓|ψ(η)
i 〉 = ψ

(η)
i (r, r)c†r↑c

†
r↓|0〉 ≡ ψ

(η)
i (r, r)|r ↑, r ↓〉.

(17)
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Table 1. Here, we report one operation for each of the 20 classes Ci; the others can be obtained by conjugation. The operations
are: the identity I, the translation tmn of m steps along x and n along y axis; the other operations C2, C4, σ, σ

′ are those of the
group of the square and are referenced to the centre; however, C2[i], C4[i], σ[i], and σ′[i] are centered on site i.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

I t22 C4σ
′[2] σx C2 σ′ C2d C2t22d C2σ

′[1] C3
4 t02d

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

C3
4 t20d C2t01 C2σx[1] C4 C2t01d C2t12d C2σx[1]d C4[1]d C2[1]d C4[1]

We define P (η)
i as the projection operator on the ith com-

ponent of the irrep η. Since

P
(η)
i

∑
r

ψ
(η)
i (r, r)|r ↑, r ↓〉 =

∑
r

ψ
(η)
i (r, r)|r ↑, r ↓〉 (18)

if

P
(η)
i |r ↑, r ↓〉 = 0 ∀r (19)

then ψ
(η)
i (r, r) = 0 ∀r. It is worth to note that equation

(19) is true if and only if

P
(η)
i |rσ〉 = 0 ∀r

where |rσ〉 = c†rσ|0〉.
It is always possible to write |rσ〉 as

|rσ〉 =
∑
η∈E

∑
i

c
(η)
i (r)|ϕ(η)

i,σ 〉 (20)

where |ϕ(η)
i,σ 〉 is the one-body eigenstate of H0 with spin σ

transforming as the ith component of the irrep η. From
(20) it follows directly that if η′ does not belong to E

P (η′)|rσ〉 = 0

and so P (η′)|r ↑, r ↓〉 = 0.
This theorem restricts the possible ground state sym-

metries in some special case. Let Uc(n) be the minimum
crossover value of U , that is the ground state with n holes
|Ψ0(n)〉 has well defined symmetry η0 for 0 < U < Uc(n).
Let |Φ(n)〉 be non-degenerate (closed shells case). Then if
we add two extra holes, the new ground state for U = 0
is a W = 0 pair over |Φ(n)〉, and its symmetry is η0ηW=0,
where ηW=0 is the symmetry of the added pair. Turn-
ing on the interaction the symmetry cannot change if
U < Uc(n + 2)! This restriction is posed by group the-
ory alone: which of the symmetries that remain allowed
is actually realised in the ground state depends on the
dynamics.

The complete characterization of the symmetry of
W = 0 pairs requires the knowledge of the optimal group
G. A partial use of the theorem is possible if one does not
know G but knows a subgroup, like the space group G. It is
then still granted that any pair belonging to an irrep of G
not represented in the spectrum has the W = 0 property.
On the other hand, accidental degeneracies occur with a
subgroup of the optimal group, and by mixing degenerate
pairs belonging to irreps represented in the spectrum one
can find W = 0 pairs also there. This is clearly illustrated
by the example reported in the next section.

3 The optimal group for the 4× 4 Hubbard
model

The half filled shell of the 4 × 4 Hubbard model has de-
generacy 6, and the space group G does not have irreps
with dimensions bigger than 4 [14]. An additional symme-
try is needed to justify the sixfold degenerate eigenvalue
ε(k) = 0, and we have found it [19]. Let us represent the
4× 4 lattice as

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Periodic boundary conditions are assumed and for exam-
ple, the nearest neighbours of 1 are 2, 5, 4 and 13. Ro-
tating the plaquettes 1, 2, 5, 6 and 11, 12, 15, 16 clock-
wise and the other two counterclockwise by 90 degrees we
obtain the effect of the “dynamical” symmetry, that we
call d:

5 1 4 8

6 2 3 7

10 14 15 11

9 13 16 12

This transformation preserves nearest neighbours (and so,
each order of neighbours) but is not an isometry, and for
example the distance between 1 and 3 changes. Thus, this
symmetry operation d is a new, dynamical symmetry. In-
cluding d and closing the multiplication table we obtain
the Optimal Group G with 384 elements in 20 classes (like
G) as shown in Table 1.

The complete character table of G is shown as Table 2.

As the notation suggests, the irreps A1 and Ã1 both
reduce to A1, in C4v, while B2 and B̃2 both reduce to B2.
Table 3 shows how the irreps of G split in C4v.

We call G the optimal group because it enables us
to explain the degeneracy of the one-particle energy
spectrum; in other terms, no accidental degeneracy of
orbitals occurs using G. In Table 4 below we report
the one-body eigenvalues for t = −1, the degeneracy
and the symmetry of each eigenvector. Below, we shall
find that G is also adequate to classify the many-
body ground states. For pairs, the W = 0 theorem en-
sures that no double occupancy is possible in the ir-
reps Ã1, B2, Γ1, Γ2, Σ1, Σ2, Σ3, Σ4, Λ2, Λ3, Ω1, Ω2, Ω3,Π1

and Π2.
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Table 2. Character table of the optimal group G of the 4× 4 model.

G C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ã1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1

B2 1 1 −1 −1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1

B̃2 1 1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 −1 1

Γ1 2 2 −2 −2 2 2 0 0 2 0 0 0 0 −2 −1 −1 1 1 0 0

Γ2 2 2 2 2 2 2 0 0 2 0 0 0 0 2 −1 −1 −1 −1 0 0

Σ1 3 3 3 3 3 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 1 1

Σ2 3 3 3 3 3 −1 1 1 −1 1 1 1 1 −1 0 0 0 0 −1 −1

Σ3 3 3 −3 −3 3 −1 −1 −1 −1 1 1 −1 1 1 0 0 0 0 1 −1

Σ4 3 3 −3 −3 3 −1 1 1 −1 −1 −1 1 −1 1 0 0 0 0 −1 1

Λ1 4 −4 −2 2 0 0 −2 2 0 −2 2 0 0 0 −1 1 −1 1 0 0

Λ2 4 −4 −2 2 0 0 2 −2 0 2 −2 0 0 0 −1 1 −1 1 0 0

Λ3 4 −4 2 −2 0 0 −2 2 0 2 −2 0 0 0 −1 1 1 −1 0 0

Λ4 4 −4 2 −2 0 0 2 −2 0 −2 2 0 0 0 −1 1 1 −1 0 0

Ω1 6 6 0 0 −2 −2 −2 −2 2 0 0 2 0 0 0 0 0 0 0 0

Ω2 6 6 0 0 −2 −2 2 2 2 0 0 −2 0 0 0 0 0 0 0 0

Ω3 6 6 0 0 −2 2 0 0 −2 −2 −2 0 2 0 0 0 0 0 0 0

Ω4 6 6 0 0 −2 2 0 0 −2 2 2 0 −2 0 0 0 0 0 0 0

Π1 8 −8 −4 4 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0

Π2 8 −8 4 −4 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0

Table 3. Reduction of the irreps of optimal group G of the
4× 4 model in the point group.

G C4v

A1 A1

Ã1 A1

B2 B2

B̃2 B2

Γ1 2B2

Γ2 2A1

Σ1 A1 + 2B1

Σ2 A1 + 2B1

Σ3 2A2 +B2

Σ4 2A2 +B2

Λ1 A1 +B1 + E

Λ2 A1 +B1 + E

Λ3 A2 +B2 + E

Λ4 A2 +B2 + E

Ω1 A2 +B1 + 2E

Ω2 A2 +B1 + 2E

Ω3 A1 +B2 + 2E

Ω4 A1 +B2 + 2E

Π1 2A1 + 2B1 + 2E

Π2 2A2 + 2B2 + 2E

Table 4. One-body spectrum for t = −1.

Energy Irrep of G Degeneracy

4 B̃2 1

2 Λ4 4

0 Ω4 6

−2 Λ1 4

−4 A1 1

4 Local formalism at half filling

As observed in the previous sections, W = 0 pairs predict
the possible ground state symmetries of systems which
differ from closed shells by a pair. Let us now consider
how the above analysis extends to the doped half filled
system. Let Shf denote the set (or shell) of the k wave
vectors such that ε(k) = 0. At half filling (N2 holes) for
U = 0 the ground state has the Shf shell half occupied,
while all |k〉 orbitals such that ε(k) < 0 are filled. The k
vectors of Shf lie on the square having vertices (±π, 0) and
(0,±π); one readily realizes that the dimension of the set
Shf , is |Shf | = 2N − 2.

For N = 4 (Fig. 2), the 6 wave vectors are
k1 = (π, 0), k2 = (0, π), k3 = (π/2, π/2), k4 =
(π/2,−π/2), k5 = (−π/2,−π/2) and k6 = (−π/2, π/2).

Since H commutes with the total spin operators,

Ŝz =
1
2

∑
r

(n̂r↑ − n̂r↓), Ŝ+ =
∑
r

c†r↑cr↓, Ŝ− = (Ŝ+)†,

(21)
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Fig. 2. The Brillouin zone; the dashed square marks the condi-
tion of vanishing kinetic energy. Shf contains 6 states (arrows)
belonging to one-dimensional irreps of T. Moreover, the arrows
are mixed by operations of C4v , and (π, 0) and (0, π) are the
basis of a two-dimensional irrep of G, while the wavevectors
k = (±π/2,±π/2) mix among themselves and yield a four-
dimensional irrep. The degeneracy of these two irreps is acci-
dental for G, but is explained by the optimal group G.

at half filling every ground state of H0 is represented in

the Sz = 0 subspace. Thus, H0 has

(
6
3

)2

degenerate un-

perturbed ground state configurations with Sz = 0. We
will show how this degeneracy is removed by the Coulomb
interaction W already in first-order perturbation theory.
Actually most of the degeneracy is removed in first-order,
and with the help of Lieb’s theorem [18] we shall be able
to single out the true, unique first order ground state of
H. In Appendix A we show that the structure of the first-
order wave functions is gained by diagonalizing W in the
truncated Hilbert space H spanned by the states of 3 holes
of each spin in Shf . In other terms, one solves a 6-particle
problem in the truncated Hilbert space H and then, un-
derstanding the particles in the filled shells, obtains the
first-order ground state eigenfunction of H in the full 16-
particle problem. We underline that the matrix of H0 inH
is null, since by construction H is contained in the kernel
of H0.

The operator
∑
r n̂r↑n̂r↓ has eigenvalues 0, 1, 2, . . . and

so the lowest eigenvalue of W is zero (in other terms, W
is positive semi-definite). The unique ground state of the
Hubbard Hamiltonian for U = 0+ at half filling will turn
out to be a W = 0 singlet state of 6 holes in Shf (filled
shells being understood). We shall obtain the W = 0
states ∈ H. It is clear that, although the U = 0 case is triv-
ial, at U = 0+ we are still facing a bona fide many-body
problem, that we are solving exactly [20]. In the present
Section we define a basis of local orbitals for the 4 × 4
Hubbard model with periodic boundary conditions; this

basis is crucial for making the problem tractable, both
at half filling and for the doped case. Using the local ba-
sis, the many body wave function of the antiferromagnetic
ground state can be projected out as the singlet compo-
nent of a single determinant, which is amazingly simple
for an interacting system; the effective interaction between
the doped holes also emerges analytically. The treatment
for the half-filled case has already been generalized [21] to
the N × N Hubbard model; below, we present the much
simpler solution of the 4 × 4 case, which is sufficient for
our present purposes.

Since W depends on the occupation number operators
n̂r, it is intuitive that its properties inH are best discussed
by a suitable one-body basis of Shf such that at least one of
these operators is diagonal. In addition, a convenient basis
should exploit the large G symmetry of the system. If Shf

were a complete set (N2 = 16 states), one would trivially
go from plane waves to atomic orbitals by a Fourier trans-
formation; instead, we must define the local counterparts
of plane-wave states using only the 2N−2 = 6 states that
belong to Shf .

For each site r we diagonalize the number operator
n̂r (for the moment we omit the spin index); it is a triv-
ial matter to verify that (nr)ij = 〈ki|n̂r|kj〉 = 1

16 ei(ki−kj)r

has eigenvalues 3/8 and five times 0. This degeneracy sug-
gests that we should diagonalize other operators in order
to label the n̂r eigenvectors, and indeed, since n̂r is com-
patible with the operations of the point symmetry group
C4v we also diagonalize the Dirac characters of this group.
The set of Dirac characters defines the irreducible repre-
sentation (irrep); thus we write the one-body basis states
{|ϕ(r)

α 〉} where α comprises the n̂r eigenvalue and an C4v

irrep label. It is easy to verify that for r = 0 the eigenvec-
tor with nonzero eigenvalue is just the totally symmetric
superposition of all the {|ki〉} ∈ Shf . Translating by r,
plane wave states pick up a phase factor: |k〉 → eikr|k〉.
Hence the n̂r eigenvector of occupation 3/8 is

|φ(r)
1 〉 ≡ |ϕ

(r)
A1
〉 =

1√
6

6∑
j=1

eikjr|kj〉 (22)

and we set up our local basis at r by

|φ(r)
i 〉 =

6∑
j=1

Oijeikjr|kj〉 (23)

|kj〉 = e−ikjr
6∑

n=1

Onj |φ(r)
n 〉 (24)

where we introduce the orthogonal matrix

O =
1√
6



1 1 1 1 1 1√
2
√

2 −1√
2

−1√
2

−1√
2

−1√
2

0 0
√

3
2 −

√
3
2

√
3
2 −

√
3
2√

3 −
√

3 0 0 0 0
0 0

√
3 0 −

√
3 0

0 0 0
√

3 0 −
√

3


· (25)
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It is clear from equations (23, 25) that |φ(r)
i 〉 has well de-

fined occupation n and symmetry for point group opera-
tions centered at site r; namely, it has n = 3/8 for i = 1
and n = 0 otherwise; it belongs to A1 for i = 1, 2, to
B2(xy) for i = 3, to B1(x2 − y2) for i = 4 and to E for
i = 5, 6. The local bases of different sites r and r′ are
connected by the unitary transformation

|φ(r)
i 〉 =

6∑
j=1

|φ(r′)
j 〉T

(r′,r)
j,i (26)

and using the orthonormality of the |k〉 states we obtain
the elements of the symmetric translation matrix

T
(r′,r)
j,i = 〈φ(r′)

j |φ
(r)
i 〉 =

6∑
m=1

Oj,mOi,meikm(r−r′). (27)

The translation matrix knows all the G symmetry of the
system, and must be very special. Using such a basis
set for the half filled shell the antiferromagnetic order of
the ground state comes out in a clear and transparent
manner. It is clear that [T (r′,r)]4 = 1. The translation by
one step towards the right is accomplished by

T (right) =



0 0 0 −1√
3

i√
3

i√
3

0 0 0 −
√

2
3
−i√

6
−i√

6

0 0 0 0 i√
2
−i√

2

−1√
3
−
√

2
3 0 0 0 0

i√
3

−i√
6

i√
2

0 0 0
i√
3

−i√
6
−i√

2
0 0 0


· (28)

The matrix that makes one step upwards is

T (up) =



0 0 0 1√
3

i√
3
−i√

3

0 0 0
√

2
3
−i√

6
i√
6

0 0 0 0 i√
2

i√
2

1√
3

√
2
3 0 0 0 0

i√
3
−i√

6
i√
2

0 0 0
−i√

3
i√
6

i√
2

0 0 0


· (29)

The reason why this choice of the basis set is clever
is now apparent. The local basis at any site r splits
into the subsets Sa = {|φ(r)

1 〉, |φ
(r)
2 〉, |φ

(r)
3 〉}, and Sb =

{|φ(r)
4 〉, |φ

(r)
5 〉, |φ

(r)
6 〉}; a shift by a lattice step sends mem-

bers of Sa into linear combinations of the members of Sb,
and conversely.

Consider the 6-body determinantal eigenstate of H0

|d(r)[1, 2, 3]〉σ = |φ(r)
1,σφ

(r)
2,σφ

(r)
3,σφ

(r)
4,−σφ

(r)
5,−σφ

(r)
6,−σ〉; (30)

the notation implies that |d(r)[i, j, k]〉σ denotes a 6-body
determinant with one body per local state and i, j, k with
spin σ, the complement with spin −σ; local states are

ordered in the natural way 1, . . . 6. In this state there is
partial occupation of site r with spin σ, but no double
occupation. Introducing the primitive translation of the
lattice êx = (1, 0) and êy = (0, 1), it turns out that a shift
by a lattice step r → r′ = r ± êl with l = x, y, produces
the transformation

|d(r)[1, 2, 3]〉σ ←→ |d(r′)[1, 2, 3]〉σ = −|d(r)[4, 5, 6]〉σ,
(31)

that is, a lattice step is equivalent to a spin flip (antifer-
romagnetic property). Since the spin-flipped state is also
free of double occupation, |d(r)[1, 2, 3]〉σ is a W = 0 6-
body eigenstate of H. A ground state which is a single
determinant is a quite remarkable property of an interact-
ing model like this, and this property holds at half filling,
not in general. To be sure, |d(r)[1, 2, 3]〉σ is a mixture of
pure spin components |ΦSAF〉 with S = 0, 1, 2, 3. However,
W is positive semi-definite and this implies that all the
pure spin components must possess the W = 0 property
as well. In particular, the singlet |ΦS=0

AF 〉 is a W = 0 eigen-
state and is the true ground state of the Hubbard model at
half filling which is predicted by Lieb’s theorem (filled shell
are understood). Explicitly, the antiferromagnetic ground
state wave function reads

|ΦS=0
AF 〉 = Â(3, 6)Â(2, 5)Â(1, 4)|d(r)[1, 2, 3]〉σ, (32)

where Â is the antisymmetrizer, such that for example
Â(1, 4)|d(r)[1, 2, 3]〉σ = |d(r)[1, 2, 3]〉σ − |d(r)[4, 2, 3]〉σ. One
can easily verify that |ΦS=0

AF 〉 is independent by the r and
σ label of |d(r)[1, 2, 3]〉σ, modulo phase factors. From the
general analysis of reference [21] we obtain that this singlet
has A1 symmetry with respect to the center of an arbi-
trary plaquette of the square lattice and vanishing total
momentum as in the strong coupling limit [22]. It is worth
noticing that the open-shell part of the antiferromagnetic
ground state (not considering the occupied inner shells) is
a 6-body W = 0 singlet state. Correlation effects enable
no fewer than 6 particles to completely avoid double occu-
pation in such a small system. This is also a consequence
of Lieb’s theorem. If all the 6 body are taken with paral-
lel spin, double occupation is trivially avoided; however,
Lieb’s theorem enforces a singlet ground state, so a singlet
W = 0 state must exist.

The 4 × 4 case at hand can be thoroughly explored
on the computer, since the size of H at half filling is
400. We have used Mathematica to diagonalize H + ξS2,
where a small ξ is a numerical device to keep the different
spin components of the ground state separated. In this
way, we observed the fourfold degenerate, W = 0 ground
state which ξ separates into its singlet, triplet, quinted
and septet components, as expected. At ξ = 0 the separa-
tion grows like U2. The antiferromagnetic property of the
wave functions was also easily and nicely borne out by the
numerical results.
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5 W = 0 pairs and quartets in the plane-wave
representation

In this section we use the antiferromagnetic ground state
|ΦS=0

AF 〉 to predict the possible symmetries of the doped
half filled system. With 12 holes, in the U → 0 limit, there
are two in Shf ; the first-order ground states correspond to
W = 0 pairs. The symmetry of these W = 0 states can be
determined a priori from the G irreps of Table 4. Apart
from the filled shells, two holes go to the Ω4 level (Tab. 4).
From the character Table 2 one can derive that

Ω2
4 = A1+B̃2+Ω4+Γ1+Γ2+Σ2+Σ3+Ω1+Ω2+Ω3; (33)

since the first 3 entries are present in Table 4, the W = 0
theorem ensures that Γ1, Γ2, Σ2, Σ3, Ω1, Ω2 and Ω3 pairs
have no double occupation. It turns out that the spin and
orbital symmetries are entangled, i.e. some of these pairs
are triplet and the rest singlet. We can see that by pro-
jecting the determinantal state c†k↑c

†
p↓|0〉 with k, p ∈ Shf

on the irreps not contained in the spectrum. One obtains
singlet W = 0 pairs for Γ1, Γ2, Σ2, Ω1; they read

|ψ
1Γ1
1 〉 = { 1√

3
(c†k1↑c

†
k2↓ + c†k2↑c

†
k1↓)

− 1
2
√

3
(c†k3↑c

†
k3↓ − c

†
k4↑c

†
k4↓ + c†k5↑c

†
k5↓ − c

†
k6↑c

†
k6↓)}|0〉

|ψ
1Γ1
2 〉 =

1
2

(c†k3↑c
†
k5↓ − c

†
k4↑c

†
k6↓ + c†k5↑c

†
k3↓ − c

†
k6↑c

†
k4↓)|0〉

(34)

|ψ
1Γ2
1 〉 = { 1√

3
(c†k1↑c

†
k1↓ + c†k2↑c

†
k2↓)

+
1

2
√

3
(c†k3↑c

†
k5↓ + c†k4↑c

†
k6↓ + c†k5↑c

†
k3↓ + c†k6↑c

†
k4↓)}|0〉

|ψ
1Γ2
2 〉 =

1
2

(c†k3↑c
†
k3↓ + c†k4↑c

†
k4↓ + c†k5↑c

†
k5↓ + c†k6↑c

†
k6↓)|0〉

(35)

|ψ
1Σ2
1 〉 = 1√

2
(c†k1↑c

†
k1↓ − c

†
k2↑c

†
k2↓)|0〉

|ψ
1Σ2
2 〉 = 1

2 (c†k3↑c
†
k4↓ + c†k4↑c

†
k3↓ + c†k5↑c

†
k6↓ + c†k6↑c

†
k5↓)|0〉

|ψ
1Σ2
3 〉 = 1

2 (c†k3↑c
†
k6↓ + c†k4↑c

†
k5↓ + c†k5↑c

†
k4↓ + c†k6↑c

†
k3↓)|0〉

(36)

and finally

|ψ
1Ω1
1 〉 = 1

2 (c†k1↑c
†
k3↓ + c†k3↑c

†
k1↓ + c†k2↑c

†
k5↓ + c†k5↑c

†
k2↓)|0〉

|ψ
1Ω1
2 〉 = 1

2 (c†k1↑c
†
k4↓ + c†k4↑c

†
k1↓ − c

†
k2↑c

†
k6↓ − c

†
k6↑c

†
k2↓)|0〉

|ψ
1Ω1
3 〉 = 1

2 (c†k1↑c
†
k5↓ + c†k5↑c

†
k1↓ + c†k2↑c

†
k3↓ + c†k3↑c

†
k2↓)|0〉

|ψ
1Ω1
4 〉 = 1

2 (c†k1↑c
†
k6↓ + c†k6↑c

†
k1↓ − c

†
k2↑c

†
k4↓ − c

†
k4↑c

†
k2↓)|0〉

|ψ
1Ω1
5 〉 = 1√

2
(c†k3↑c

†
k3↓ − c

†
k5↑c

†
k5↓)|0〉

|ψ
1Ω1
6 〉 = 1√

2
(c†k4↑c

†
k4↓ − c

†
k6↑c

†
k6↓)|0〉.

(37)

Other irreps yield W = 0 triplet pairs. They are the three
times degenerate irrep

|ψ
3Σ3
1 〉 = 1√

2
(c†k1↑c

†
k2↓ − c

†
k2↑c

†
k1↓)|0〉

|ψ
3Σ3
2 〉 = 1

2 (c†k3↑c
†
k4↓ − c

†
k4↑c

†
k3↓ + c†k5↑c

†
k6↓ − c

†
k6↑c

†
k5↓)|0〉

|ψ
3Σ3
3 〉 = 1

2 (c†k3↑c
†
k6↓ − c

†
k4↑c

†
k5↓ + c†k5↑c

†
k4↓ − c

†
k6↑c

†
k3↓)|0〉

(38)

and the two sixfold sets

|ψ
3Ω2
1 〉 = 1

2 (c†k1↑c
†
k3↓ − c

†
k3↑c

†
k1↓ + c†k2↑c

†
k5↓ − c

†
k5↑c

†
k2↓)|0〉

|ψ
3Ω2
2 〉 = 1

2 (c†k1↑c
†
k4↓ − c

†
k4↑c

†
k1↓ − c

†
k2↑c

†
k6↓ + c†k6↑c

†
k2↓)|0〉

|ψ
3Ω2
3 〉 = 1

2 (c†k1↑c
†
k5↓ − c

†
k5↑c

†
k1↓ + c†k2↑c

†
k3↓ − c

†
k3↑c

†
k2↓)|0〉

|ψ
3Ω2
4 〉 = 1

2 (c†k1↑c
†
k6↓ − c

†
k6↑c

†
k1↓ − c

†
k2↑c

†
k4↓ + c†k4↑c

†
k2↓)|0〉

|ψ
3Ω2
5 〉 = 1√

2
(c†k3↑c

†
k5↓ − c

†
k5↑c

†
k3↓)|0〉

|ψ
3Ω2
6 〉 = 1√

2
(c†k4↑c

†
k6↓ − c

†
k6↑c

†
k4↓)|0〉

(39)

and

|ψ
3Ω3
1 〉 = 1

2 (c†k1↑c
†
k3↓ − c

†
k3↑c

†
k1↓ − c

†
k2↑c

†
k5↓ + c†k5↑c

†
k2↓)|0〉

|ψ
3Ω3
2 〉 = 1

2 (c†k1↑c
†
k4↓ − c

†
k4↑c

†
k1↓ + c†k2↑c

†
k6↓ − c

†
k6↑c

†
k2↓)|0〉

|ψ
3Ω3
3 〉 = 1

2 (c†k1↑c
†
k5↓ − c

†
k5↑c

†
k1↓ − c

†
k2↑c

†
k3↓ + c†k3↑c

†
k2↓)|0〉

|ψ
3Ω3
4 〉 = 1

2 (c†k1↑c
†
k6↓ − c

†
k6↑c

†
k1↓ + c†k2↑c

†
k4↓ − c

†
k4↑c

†
k2↓)|0〉

|ψ
3Ω3
5 〉 = 1

2 (c†k3↑c
†
k4↓ − c

†
k4↑c

†
k3↓ + c†k6↑c

†
k5↓ − c

†
k5↑c

†
k6↓)|0〉

|ψ
3Ω3
6 〉 = 1

2 (c†k3↑c
†
k6↓ − c

†
k6↑c

†
k3↓ + c†k4↑c

†
k5↓ − c

†
k5↑c

†
k4↓)|0〉.

(40)

The above a priori argument hardly applies to the symme-
tries of W = 0 quartets, because Ω4

4 contains almost every
symmetry and we do not know any W = 0-like theorem for
quartets. However, we can still build the projection oper-
ators by Mathematica; we can project the 225 quartets on
the irreps of G and carry on the analysis in an efficient, if
not elegant, way. We found that the singlet W = 0 quar-
tets are 13 as many as the singlet W = 0 pairs, and belong
to the same irreps Γ1, Γ2, Σ2, Ω1. Therefore, these are
the possible symmetries of the first-order ground states
with 14 holes. Exact diagonalization results [2] show that
for U/t < 3 and 16 − 2 = 14 holes the ground state is
sixfold degenerate, with a doublet of states with momen-
tum (π, π) and a quartet with momentum (±π/2,±π/2).
In view of equations (37), the computed ground state cor-
responds to an Ω1 electron pair over the half filled system.
For U/t > 3 and the same number of holes a level cross-
ing takes place: the ground state is threefold degenerate
and contains a state with momentum (0, 0) and a doublet
with momentum (π, 0) and (0, π). In view of equations
(36), the computed ground state must be assigned to a
Σ2 electron pair over the half filled system. In both cases,
the symmetry of the ground state corresponds to a W = 0
pair.
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6 Local picture of the W = 0 pairs
and quartets

The antiferromagnetic property of the local basis of any
site r readily prompts W = 0 pairs; alternatively, we can
transform the pairs and quartets of well-defined symmetry
(Sect. 5) using the local basis. Both methods are useful.
The vacuum at half filling is a W = 0 state with 6 holes.
The quartets are then obtained from the antiferromagnetic
ground state at half filling by removing a W = 0 pair.

6.1 W = 0 pairs

Chosen a site r, let |φ(r)
α 〉 be a normalized linear combi-

nation of the states |φ(r)
1 〉, |φ

(r)
2 〉, |φ

(r)
3 〉 of Sa and φ

(r)
β be

a normalized linear combination of |φ(r)
4 〉, |φ

(r)
5 〉, |φ

(r)
6 〉 of

Sb. Then,

|d(r)
α,β〉 = |φ(r)

α↑φ
(r)
β↓ 〉 (41)

is a two-body state free of double occupation on every site

and
|φ(r)
α↑φ

(r)
β↓ 〉+|φ

(r)
β↑ φ

(r)
α↓ 〉√

2
is a W = 0 pair. Since for each spin

one has 3 degrees of freedom, one can build 9 independent
pairs in this way; they are bases for the Ω1 and Σ2 W = 0
pairs of the previous section. The only alternative method
for obtaining W = 0 pairs is that of forming |φ(r)

α 〉 and
|φ(r)
β 〉 as linear combinations of states of the same subset

(both from Sa or both from Sb). This can be accomplished
in such a way that |φ(r)

1 〉 never appears for both spins;
actually, the bases of Γ1 and Γ2 are obtained in this way.
If we use Sa for both spin directions then after a lattice
step in any direction the pair is formed exclusively with
states of Sb and its occupation vanishes; such pairs live on
a sublattice.

We rewrite the pairs and quartets of Section 5 using
the local basis of any site r. By equation (24),

|ki ↑ kj ↓〉 =
6∑

m,n=1

e−i(ki+kj)rOniOmj |φ(r)
n↑φ

(r)
m↓〉. (42)

For instance, the operator that annihilates the 6th com-
ponent of the Ω1 W = 0 pair in equation (37) becomes

Ψ
1Ω1
6 = − 1√

6
(c1↑c6↓ + c6↑c1↓) +

1
2

(c6↑c3↓ + c3↑c6↓)

+
1

2
√

3
(c2↑c6↓ + c6↑c2↓), (43)

where c(r)
†

iσ and c(r)iσ are hole creation and annihilation op-
erators in the local states φ(r)

iσ ; in equation (43) the site
is not specified since whatever it is Ψ

1Ω1
6 does not change.

The local representation of symmetry-adapted pairs is of
interest because different irreps are well characterized by
their local behaviour.

6.2 W = 0 quartets

With 14 holes, in the U → 0 limit, there are four in Shf ; the
first-order ground states correspond to W = 0 quartets.
By removing in all possible ways two holes of opposite
spin from the 6-body W = 0 determinant |d(r)[1, 2, 3]〉σ
of equation (30) one produces nine 4-body determinants.
They are free of double occupation on site r because |φ(r)

1 〉
cannot appear for both spins; this property holds on all
sites because of the special form of the translation matrices
(28) and (29). It follows that these areW = 0 states and in
first-order perturbation theory they belong to the ground
state multiplet. It is clear that these 9 first-order ground
states are in one-to-one correspondence to the pairs (41),
and for instance |φ(r)

2↓ φ
(r)
3↓ φ

(r)
5↑ φ

(r)
6↑ 〉 corresponds to the pair

|φ(r)
1↓ φ

(r)
4↑ 〉; since |ΦS=0

AF 〉 transforms as the totalsymmet-
ric one-dimensional irrep A1 under the C4v operations re-
ferred to the center of a plaquette, the symmetries of the
9 quartets and the 9 pairs are also the same, namely, they
are Ω1 and Σ2 of G. The total momentum labels are also
the same. There is actually a complete correspondence be-
tween W = 0 pairs and quartets; the quartets are also 13
and those that were not obtained above belong to Γ1 and
Γ2. These cannot arise in the same way because one can
show that they are not obtained by removing two holes
from |d(r)[1, 2, 3]〉σ. This means that Γ1 and Γ2 are not to
be interpreted as pairing states.

7 Pairing mechanism

We consider the ground state of the 4× 4 model with 14
holes; aside from the 10 holes in the inner A1 and Λ1 shells
(see Tab. 4) the outer Ω4 shell contains 4 holes in a W = 0
quartet. We are in position to show that the principles of
Section 1.2 produce a diagnosis of pairing between two
electrons added to the antiferromagnetic 16-holes ground
state (half filling).

We recall from Section 5 that, by comparing with
exact diagonalization results [2], the ground state is as-
signed to Ω1, equation (37), at weak coupling and to Σ2,
equation (36), at a stronger coupling. In analogy with the
points a–c) of Section 1.2, we must preliminarily verify
that symmetry does not forbid obtaining these symmetries
by creating W = 0 electron pairs, equations (34–40), from
the antiferromagnetic state of equation (32). This is the
same as annihilating hole pairs. Since the state |ΦS=0

AF 〉 of
equation (32) is a total symmetric singlet with vanishing
total momentum, the labels of the quartets will be the
same of the annihilated hole pairs. This operation can be
done by hand, or with the help of Mathematica, and the
answer to the preliminary question is affirmative for Ω1

and Σ2, but not for all pairs. We obtain 24 W = 0 quar-
tets out of the 28 states in equations (34–40), since the
annihilation of Γ1 and Γ2 W = 0 pairs gives identically
zero.

We need to modify the canonical transformation to
deal with the 4× 4 cluster with periodic boundary condi-
tions near half filling; the previous form is not adequate
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because the Shf shell is only partially occupied and so
in equations (2, 3) we have to use the antiferromagnetic
state |ΦS=0

AF 〉 of equation (32). In small clusters like the
4 × 4 one the one-body states are widely separated and
the intra-shell interaction is much more important than
the inter-shell one; therefore, we consider only the m states
made removing two holes in Shf from |ΦS=0

AF 〉, neglecting
the high-lying unoccupied orbitals [17].

We now come to item d) of Section 1.2, the identifica-
tion of the two states which are obtained by spin-flip from
each other and are coupled by the interaction in second
order. The explicit form of the symmetry adapted pairs
of Section 5 shows that |ψ

1Σ2
1 〉 and |ψ

3Σ3
1 〉 involve only k1

and k2. This suggests that by taking linear combinations
we can obtain a two-body state and its spin-flipped image.
Specifically, using the electron creation operators

α[±]
σ ≡ 1√

2
(ck1σ ± ck2σ) (44)

we build the following two-electron W = 0 determinants:

|w1〉 = α
[+]
↑ α

[−]
↓ |0〉e, |w2〉 = α

[−]
↑ α

[+]
↓ |0〉e. (45)

where the state |0〉e is the electron-vacuum state:
c†kσ|0〉e = 0, ∀k, σ. With equation (45) we can build the
following m states:

|m1〉 = α
[+]
↑ α

[−]
↓ |ΦS=0

AF 〉, |m2〉 = α
[−]
↑ α

[+]
↓ |ΦS=0

AF 〉. (46)

Since |m1〉 and |m2〉 have projection only on irreps Σ2

and Σ3, the states (46) can be mixed by the operator Weff

only between themselves, and so they are the only states
involved in the canonical transformation. The eigenvalue
equation (12) reduces to a 2× 2 problem; the Weff matrix
to diagonalize is:

[
0 〈m1|Weff |m2〉

〈m2|Weff |m1〉 0

]
. (47)

The eigenvalues are ±〈m1|Weff |m2〉 and the eigenvec-
tors are 1√

2
(1,±1). Expanding these eigenvectors in the

base (46), we find:

|Ψ
1Σ2
1 〉 =

1√
2

(|m1〉+ |m2〉) ≡ |ψ
1Σ2
1 〉e ⊗ |ΦS=0

AF 〉,

|Ψ
3Σ3
1 〉 =

1√
2

(|m1〉 − |m2〉) ≡ |ψ
3Σ3
1 〉e ⊗ |ΦS=0

AF 〉, (48)

where the notation |ψηi 〉e ⊗ |ΦS=0
AF 〉 stands for creating the

electron-pair |ψηi 〉 over the antiferromagnetic state |ΦS=0
AF 〉

(filled shells are understood) to get a 14 hole state. We use
this example to stress that pairing by the present mecha-
nism is possible only if the optimal group G possesses twin
singlet and triplet representations with the same number
of components, built by the same orbitals.

In a similar way, |ψ
1Ω1
6 〉 and |ψ

3Ω2
6 〉 involve only k4

and k6; this suggests introducing the electron creation
operators

β[±]
σ ≡ 1√

2
(ck4σ ± ck6σ); (49)

the two-electron W = 0 determinants

|w′1〉 = β
[+]
↑ β

[−]
↓ |0〉e, |w′2〉 = β

[−]
↑ β

[+]
↓ |0〉e (50)

are obtained from each other by spin-flip. Incidentally, the
latter property is preserved if one switches to the local pic-
ture by the transformation (24): introducing a new orbital

cΩ6σ =
−c1σ√

3
+
c5σ√

2
+
c6σ√

6
(51)

one finds

|w′1〉 = cΩ6↑c6↓|0〉e, (52)

while

|w′2〉 = c6↑cΩ6↓|0〉e. (53)

Thus, we have identified the m states

|m′1〉 = β
[+]
↑ β

[−]
↓ |ΦS=0

AF 〉, |m′2〉 = β
[−]
↑ β

[+]
↓ |ΦS=0

AF 〉. (54)

Since |m′1〉 and |m′2〉 have projection only on irreps Ω1

and Ω2, the states (54) can be mixed by the operator Weff

only between themselves, and we find another 2×2 matrix

[
0 〈m′1|Weff |m′2〉

〈m′2|Weff |m′1〉 0

]
(55)

with eigenvalues ±〈m′1|Weff |m′2〉 and eigenvectors
1√
2
(1,±1). Therefore,

|Ψ
1Ω1
2 〉 =

1√
2

(|m′1〉+ |m′2〉) ≡ |ψ
1Ω1
6 〉e ⊗ |ΦS=0

AF 〉,

|Ψ
3Ω2
6 〉 =

1√
2

(|m′1〉 − |m′2〉) ≡ |ψ
3Ω2
6 〉e ⊗ |ΦS=0

AF 〉. (56)

The numerical values of the eigenvalues for U = −t = 1 eV
are negative in both cases,

〈m1|Weff |m2〉 = −60.7 meV 〈m′1|Weff |m′2〉 = −61.9 meV
(57)

which means that in both the cases the Cooper-like equa-
tion (12) gives singlet ground states; the triplets have an
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opposite correction to the energy. The binding energy is
larger for the |ψ1Ω1〉 singlet, which is the true ground state
(the result cannot depend on the component of the ir-
rep). Moreover since |ΦS=0

AF 〉 is a totalsymmetric singlet
with vanishing total momentum, we can also predict mo-
mentum, spin and symmetry of the ground state. Our ap-
proach has enough predictive power to yield the symmetry,
wavevector and degeneracy of the ground state.

8 Conclusions

By a canonical transformation of the Hubbard Hamilto-
nian, one finds [15,16] Cooper-like pairing from the repul-
sive interactions. The canonical transformation actually
does a configuration mixing and works independently of
the size of the system. The vacuum is the ground state
of the system at U = 0+ and the Cooper-like bound
states arise from W = 0 pairs allowed by the C4v sym-
metry. Thus our approach is actually not a perturbation
theory but its application is less demanding at weak cou-
pling, when one can limit the configuration mixing to a
few particle-hole excitations. The attraction comes from a
spin-flip scattering. We have tested the results with exact
diagonalization data for open boundary condition clusters
[3,17] in the three-band Hubbard model. Good agreement
with the numerical data is already obtained by the sim-
plest approximation within our scheme, i.e. by truncating
the configuration mixing at the level of electron-hole pairs
exchange.

In this paper we test our W = 0 pairing mechanism
within the one-band Hubbard model with periodic bound-
ary conditions using exact numerical data on the 4 × 4
square lattice [2]. This is a time-honored subject and sev-
eral authors pointed out that those data could be quali-
tatively understood by a weak coupling analysis [11,12];
however no clear-cut criterion for pairing was available
and the optimal group was not yet known; furthermore,
the rôle of symmetry and W = 0 pairs had not been dis-
covered and the reason of the apparent success of the weak
coupling analysis was not clarified.

Here, the criteria that allow one to unambiguously di-
agnose pairing of two holes added to the system are es-
tablished. First, one has to build the vacuum explicitly.
We obtained the analytic ground state at half filling for
U = 0+ by a new approach [21]. Second, one needs the
symmetry of the W = 0 pairs in the system at hand. This
can be found by using the above W = 0 theorem. The full
exploitation of this theorem requires the knowledge of the
optimal group, that is, a symmetry group which explains
all the degeneracies. We have obtained this group here for
the first time. An adequate knowledge of the symmetry
of the system allows one to develop the canonical trans-
formation on the 4× 4 cluster analytically in detail. This
yields good agreement with the data and a clear diagnosis
of pairing. The result lends further support to the gen-
eral approach [15,16] which predicts pairing in the N ×N
cluster for any N .

Further evidence comes from the superconducting
quantization of the magnetic flux. An arbitrary magnetic

flux through a hole in the plane reduces the point symme-
try group to an Abelian subgroup which does not support
W = 0 pairs, and is incompatible with the pairing mecha-
nism; however, the C4v symmetry is fully restored at half
fluxon [17] φ0/2 = hc/2e allowing the W = 0 pairs again.
This is why the energy has a second minimum versus flux
and the system swallows half fluxons. This is a real signa-
ture of pairing.

On the other hand, the above results also prove that
important ingredients are still missing and must be in-
cluded. The 4× 4 Model shows evidence of bound pairs of
nonvanishing momentum, in degenerate representations.
This opens up the possibility of charge inhomogeneities
and Jahn-Teller distortions.

This work was supported by the Istituto Nazionale di Fisica
della Materia.

Appendix A: Contributions to the W matrix
from filled shells

The N2−body determinantal wave functions with Sz = 0
that one can build using the orbitals with ε(k) < 0 and

half of those with ε(k) = 0 are a set of

(
2N − 2
N − 1

)2

ele-

ments. Each represents one of the degenerate unperturbed
(U = 0) ground state configurations at half filling. First-
order perturbation theory requires the diagonalization of
the W matrix over such a basis.

The diagonal elements of the W matrix are just
expectation values over determinants |kα ↑ kβ ↓ . . .〉.
Such an expectation value is a sum over all the possible
pairs of the bielectronic elements of W like

W (αβ, αβ) =
∑
r

U〈kα|nr|kα〉〈kβ |nr|kβ〉

=
∑
r

U
1
N2

ei(kα−kα)r 1
N2

ei(kβ−kβ)r =
U

N4
N2

=
U

N2
; (A.1)

the result is independent of kα and kβ . Since in any deter-
minant of the set N2/2 plane wave states are occupied for
each spin, there are N4/4 pairs, and the diagonal elements
are all equal to UN2/4. Thus, the diagonal elements shift
all the eigenvalues by this fixed amount.

The off-diagonal elements of the W matrix between
determinants that differ by three or more spin-orbitals
vanish because W is a two-body operator. The off-
diagonal elements between determinants that differ by one
spin-orbital are sum of contributions like W (αβ, γβ) =∑
r U〈kα|nr|kγ〉〈kβ |nr|kβ〉 that vanish because of the
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orthogonality of the plane-wave orbitals. One is left
with the off-diagonal elements between determinants
that differ by two spin-orbitals, which coincide with
the corresponding bielectronic elements W (αβ, γδ) =∑
r U〈kα|nr|kγ〉〈kβ |nr|kδ〉. This is just the matrix of W

over the truncated Hilbert space H spanned by the states
of the holes in the half filled shell, ignoring the filled ones.
We stress that there are N − 1 holes of each spin in Shf ,
thus H is much smaller than the full Hilbert space of the
Hubbard Hamiltonian; however, since the number of holes
grows linearly with N , the problem is still far from trivial.
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